Welcome

Nano-Opto-Fluidics Lab

We are an interdisciplinary team, working on state of the art nanofabrication techniques, micro and nanofluidics, nano-optics, biosensing and plasmonics. Our goal is to develop a portable, integrated (a lab-on-a-chip) to study single (bio)molecules.

We have a strong focus on (bio)applications: we analyze single proteins, DNA and fluorescent emitters (like quantum dots).

The group is part of the Blick group, at the Institute for Nanostructures and Solid State Physics (INF) at the University of Hamburg (UHH). We are located in the downtown campus, next to Dammtor (map).

Research Topics

1. Nanofabrication

Nanofabrication

We are part of the INF, where we have access to a fully equipped cleanroom, with photolithography, etching and post processing capabilities. We also have access to nanofabrication equipment, like nanoimprint and eletron beam lithography. We are experts in nanoimprint lithography. We make stamps by EBL, optical lithography, etc.

2. Nanofluidics

Nanofluidics

We make and study integrated fluidic devices, that have microchannels and nanochannels as small as 12 nm x 12 nm. We study basic phenomena that occur in such confined spaces (zepto liters, zL, i.e., 10-21 L ), such as the formation of the double layer, liquid mixing, filling processes, and biomolecules flow.

3. Nano-optics

Nano optics

We use plasmonic nanoantennas to nanofocus the light. These tiny metallic nanoparticles can concentrate and enhance electromagnetic fields into localized, nanometric, hot spots, beating diffraction limits.

We study the optical properties of the antennas for different geometries, materials and configurations, and use them to probe inside the nanochannels with 30 nm spatial resolution.

4. Single particle/molecule quantification

Single particle/molecule quantification

Combining plasmonics and nanofluidics in a lab-on-a-chip, we can detect single nanoemitters (e.g., quantum dots), drive then trough the nanochannels, and count them one by one. The antenna optical operation range is tuned in resonance with the excitation and/or emission signals. We are developing applications for these ultrasensitive (bio)sensors, ranging from medical applications to environmental monitoring.

5. DNA optical mapping

DNA optical mapping

One of our main goals is to stretch DNA molecules into the nanochannels, and use the plasmonic antenna to read the optical signal of the DNA with a resolution that goes far beyond light diffraction (sub 30 nm ).

Group Members


pbayatParisa Bayat

PhD Student









Franziska Esmek

Bachelor Student










Isabell Trinh

Student Assistant


 

Former group members and students

  • Thomas Klings (currently at UHH)
    Bendix Kettelsen (UHH)
    Jon Polensky (UHH)
    Eleonora de Luca (EPFL)
    Valeria Rusticceli (Eindhoven University of Technology)
    Enrica Montinaro (EPFL)
    Corrado Carbone ( CHN Industrial)
    Anna Laura Palmarelli (Aeronautical Service, Fiumicino)

Open Positions

 

 


We are always interested in motivated students and post docs who want to join the group!

HiWi, Bachelor and Master Thesis Projects are available – we can discuss topics to your interest.

Contact us!


Publications

(Google Scholar Profile)

  • • Fernandez-Cuesta, M. West, E. Montinaro, D. Gargas, A. Schwartzberg, A. Weber-Bargioni, P. J. Schuck, and S. Cabrini
. >Real time, individual particle detection and quantification with a nanochannel integrated with a plasmonic nanoantenna. Submitted (2016)

  • • Schleunitz, M. Vogler, I. Fernandez-Cuesta, H. Schift and G. Gruetzner Innovative and Tailor-made Resist and Working Stamp Materials for Advancing NIL-based Production Technology
J. Photopolym. Sci. Technol, 26 1 119 (2013)

  • • C. L. C. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, and A. Kristensen Plasmonic V- groove waveguides with Bragg grating filters via nanoimprint lithography,
 Optics Express, 20 5 5698 (2012)

  • • C.L.C Smith, B. Desiatov, I. Goykhmann, I. Fernandez-Cuesta, U. Levy, A. Kristensen Bragg grating filters in plasmonic V-groove waveguides. Proceedings of the Conference on Lasers and Electro-Optics (CLEO) (2012)

  • • I. Fernandez-Cuesta, A. L. Palmarelli, X. Liang, J. Zhang, S. Dhuey, D. Olynick, and S. Cabrini, Fabrication of fluidic devices with 30nm nanochannels by direct imprinting,
J. Vac. Sci. Technol. B, 29 06F801 (2011)

  • • A. Bonanni, I. Fernández-Cuesta, X. Borrisé, F. Pérez-Murano, S. Alegret and M. del Valle DNA hybridization detection by electrochemical impedance spectroscopy using interdigitated gold nanoelectrodes
Microchim Acta 170, 275 (2010)

  • • S. Merino, A. Retolaza, V. Trabadelo., A. Cruz, P. Heredia. J.A.Alduncín, D. Mecerreyes. I. Fernández- Cuesta, X. Borrisé, F. Pérez-Murano.
Protein patterning on the micro- and nanoscale by thermal nanoimprint lithography on a new functionalized copolymer Journal of Vacuum Science and Technology B. 27, 2439 (2009)

  • • I. Fernandez-Cuesta, R. B. Nielsen, A. Boltasseva, X. Borrise, F. Pérez-Murano and A. Kristensen. Excitation of fluorescent nanoparticles by plasmons confined and propagating in V-grooves Applied Physics Letters, 95 20 (2009)

  • • R.B. Nielsen, I. Fernandez-Cuesta, A. Boltasseva, V.S. Volkov, S.I. Bozhevolnyi, A. Klukowska, and A. Kristensen.
Channel Plasmon Polariton Propagation in Nanoimprinted V-Groove Waveguides
Optics Letters. 33 (23) 2800 (2008)

  • • R.B. Nielsen, A. Boltasseva, A. Kristensen, S.I. Bozhevolnyi, V.S. Volkov, I.F. Cuesta, and A. Klukowska. Fabrication of plasmonic waveguides by nanoimprint and UV-lithography Advanced Fabrication Technologies for Micro/Nano Optics and Photonics, art. 688304, 88304. (2008)

  • • X. Cartoixa, R. Rurali, I. Fernandez-Cuesta, F. Perez-Murano, and J. Suñé. Fabrication of ordered arrays of quantum wires through hole patterning Journal of Physics - Conference Series. 100(5), 052049 (2008)

  • • I. Fernandez-Cuesta, X. Borrise, A. Retolaza, S. Merino, D.A. Mendels, O. Hansen, A. Kristensen, and F. Perez-Murano.
Determination of stress build-up during nanoimprint process in triangular polymer structures
Microelectronic Engineering,. 85(5-6), 838 (2008)

  • • D.A. Mendels, I. Fernandez-Cuesta, X. Borrise, A. Retolaza, S. Merino, O. Hansen, A. Kristensen, and F. Perez-Murano.
A finite element mesh tailored to full NIL process modelling: hot embossing, cool-down and stamp release Microprocesses and Nanotechnology, 278 (2007)

  • • C. Gourgon, N. Chaix, H. Schift, M. Tormen, S. Landis, C.M.S. Torres, A. Kristensen, R.H. Pedersen, M.B. Christiansen, I. Fernandez-Cuesta, D. Mendels, L. Montelius, and T. Haatainen.
Benchmarking of 50 nm features in thermal nanoimprint
Journal of Vacuum Science & Technology B,. 25(6), 2373. (2007)

  • • A. Boltasseva, K. Leosson, T. Rosenzveig, R.B. Nielsen, R.H. Pedersen, K.B. Jorgensen, I. Fernandez- Cuesta, J. Jung, T. Sondergaard, S.I. Bozhevolnyi, and A. Kristensen.
Fabrication of plasmonic waveguides for device applications
art. no. 663804, Photonic Metamaterials., 63804. (2007)

  • • I. Fernandez-Cuesta, R.B. Nielsen, A. Boltasseva, X. Borrise, F. Perez-Murano, and A. Kristensen. V-groove plasmonic waveguides fabricated by nanoimprint lithography Journal of Vacuum Science & Technology B, 25(6): p. 2649 (2007)

  • • I. Fernández-Cuesta, X. Borrisé and F. Pérez-Murano. AFM local anodic oxidation of thin Si3N4 layers for robust prototyping of nanostructures. Journal of Vacuum Science & Technology B, 24 (6) 2988 (2006)

  • • I. Fernandez-Cuesta, X. Borrise and F. Perez-Murano. Atomic force microscopy local oxidation of silicon nitride thin films for mask fabrication Nanotechnology. 16(11) 2731 (2005)

  • • I. Fernandez, A. Cremades and J. Piqueras. Cathodoluminescence study of defects in deformed (110) and (100) surfaces of TiO2 single crystals Semiconductor Science and Technology. 20(2) 239 (2005)

Contact / Impressum

Dr. Irene Fernandez-Cuesta, Scientific Staff

ifernand (at) physnet.uni-hamburg.de

+49 (40) 42838 3327


Universität Hamburg - Fachbereich Physik

Institut für Nanostruktur und Festkörperphysik (INF)

Jungiusstraße 11C, 20355 Hamburg